发稿时间:2020-09-27浏览次数:281

USTC Astronomy Colloquium Series: 2020 Fall
Testing modifications of gravity from galaxy motions on cosmological scales
何建华  副教授
南京大学
2020/9/29, 4:00pm , the 19th-floor Observatory Hall
报告人:
何建华,南京大学天文与空间科学学院副教授。2006年获上海交通大学物理学学士学位。2011年获复旦大学理论物理博士学位。 2011-2015年在意大利国家天文台从事博士后研究工作。2015-2018年获英国杜伦大学International Junior Research Fellowship,在杜伦大学计算宇宙学中心(ICC,Durham)从事研究工作。2018年12月获南京大学登峰B计划资助,加盟天文与空间科学学院。主要从事宇宙学研究。研究领域包括,宇宙微波背景辐射以及宇宙大尺度结构形成。曾经参与欧空局Euclid卫星项目,以及由美国能源部主导的Dark Energy Spectroscopic Instrument (DESI)巡天项目。
摘要:
Current tests of general relativity (GR) remain confined to the scale of stellar systems or thestrong gravity regime. A departure from GR on cosmological scales has been advocated as analternative to the cosmological constant to account for the observed cosmic expansion history.However, such models yield distinct values for the linear growth rate of density perturbationsand consequently for the associated galaxy peculiar velocity field. Measurements of theresulting anisotropy of galaxy clustering have thus been proposed as a powerful probe of thevalidity of GR on cosmological scales, but despite substantial efforts, they suffer fromsystematic errors comparable to statistical uncertainties. In this talk, I will present the results of a forward-modelling approach that fully exploits the sensitivity of the galaxy velocity field to modifications of GR. We use state-of-the-art high resolution N-body simulations of a standard GR (ΛCDM) model and a compelling f(R) model—one of GR’s simplest variants, in which the Ricci scalar curvature, R, in the Einstein–Hilbert action is replaced by an arbitrary function of R—to build simulated catalogues of stellar-mass selected galaxies through a robust match to the SDSS. We find that f(R) fails to reproduce the observed redshift-space clustering on scales of ~1–10 Mpc h−1, where h is the dimensionless Hubble parameter. Instead, the standardΛCDM GR model agrees impressively well with the data. This result provides strong confirmation, on cosmological scales, of the robustness of Einstein’s general theory of relativity.